Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(9)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37766302

RESUMO

The metagenomic analysis of mosquitoes allows for the genetic characterization of mosquito-associated viruses in different regions of the world. This study applied a metagenomic approach to identify novel viral sequences in seven species of mosquitoes collected from the Novosibirsk region of western Siberia. Using NGS sequencing, we identified 15 coding-complete viral polyproteins (genomes) and 15 viral-like partial sequences in mosquitoes. The complete sequences for novel viruses or the partial sequences of capsid proteins, hypothetical viral proteins, and RdRps were used to identify their taxonomy. The novel viral sequences were classified within the orders Tymovirales and Picornavirales and the families Partitiviridae, Totiviridae, Tombusviridae, Iflaviridae, Nodaviridae, Permutotetraviridae, and Solemoviridae, with several attributed to four unclassified RNA viruses. Interestingly, the novel putative viruses and viral sequences were mainly associated with the mosquito Coquillettidia richardii. This study aimed to increase our understanding of the viral diversity in mosquitoes found in the natural habitats of Siberia, which is characterized by very long, snowy, and cold winters.


Assuntos
Culicidae , Nodaviridae , Humanos , Animais , Viroma , Sibéria , Proteínas do Capsídeo/genética
2.
Virus Genes ; 55(4): 448-457, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31111398

RESUMO

Tick-borne encephalitis viruses (TBEVs) are usually divided into three major subtypes: European (TBEV-Eu), Siberian (TBEV-Sib) and Far Eastern (TBEV-FE). The TBEV-Eu strains have the longest genomes, and TBEV-FE strains have the smallest genomes. Changes in the variable region of the untranslated region (V3' UTR) play a major role in determining the viral genome length. Analyses of the 3' UTRs of the different subtypes of TBEV have revealed significant changes in the secondary structures of the V3' UTR of TBEV. More complex secondary structures of the V3' UTR regions are typical for TBEV-Eu. The Siberian strain Tomsk-PT122 was isolated from birds and has an unusual 3' UTR. Several short fragment (24-26 nucleotides) insertions derived from the viral E (2) and NS4a (1) genes have been found in the V3' UTR of Tomsk-PT122. Additionally, the length of the V3' UTR increases from 21 to 37 nucleotides during passages of the C11-13 strain of TBEV-Sib into PEK, 293 and Neuro-2a cells. The elongation of the V3' UTRs of Tomsk-PT122 and C11-13 is the first direct evidence of an intragenomic 3' UTR modification (insertion) for TBEV. Thus, the obtained results suggest that changing the length of the V3' UTR in the genome is typical for different TBEV subtypes and can play an essential role in effective TBEV replication in different host cells.


Assuntos
Regiões 3' não Traduzidas/genética , Vírus da Encefalite Transmitidos por Carrapatos/genética , Variação Genética , Animais , Aves/virologia , DNA Viral , Vírus da Encefalite Transmitidos por Carrapatos/classificação , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Genoma Viral , Humanos , Ixodes/virologia , Masculino , Conformação de Ácido Nucleico , Filogenia , Especificidade da Espécie , Replicação Viral
3.
Arch Virol ; 162(10): 3151-3156, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28631054

RESUMO

The C11-13 strain from the Siberian subtype of tick-borne encephalitis virus (TBEV) was isolated from human brain using pig embryo kidney (PEK), 293, and Neuro-2a cells. Analysis of the complete viral genome of the C11-13 variants during six passages in these cells revealed that the cell-adapted C11-13 variants had multiple amino acid substitutions as compared to TBEV from human brain. Seven out of eight amino acids substitutions in the high-replicating C11-13(PEK) variant mapped to non-structural proteins; 13 out of 14 substitutions in the well-replicating C11-13(293) variant, and all four substitutions in the low-replicating C11-13(Neuro-2a) variant were also localized in non-structural proteins, predominantly in the NS2a (2), NS3 (6) and NS5 (3) proteins. The substitutions NS2a1067 (Asn → Asp), NS2a1168(Leu → Val) in the N-terminus of NS2a and NS31745(His → Gln) in the helicase domain of NS3 were found in all selected variants. We postulate that multiple substitutions in the NS2a, NS3 and NS5 genes play a key role in adaptation of TBEV to different cells.


Assuntos
Encéfalo/virologia , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Genômica , Cultura de Vírus/métodos , Substituição de Aminoácidos , Linhagem Celular , Genoma Viral , Humanos , Modelos Moleculares , Filogenia , Conformação Proteica , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...